[8/21 and 22/19]

[23] (**Click here ****for previous “Single Paragraphs”**)

Leave a reply

In his book, *FREEFALL *(2009, Penguin Books), **Joseph Eugene Stiglitz**, a professor at Columbia University and a recipient of the Nobel Memorial Prize in Economic Sciences (2001) and the John Bates Clark Medal (1979), states that economics is a predictive science. Now, one must distinguish between predicting a) planetary motion in its **scheme of recurrence**, and b) this afternoon’s weather vs. next month’s weather, or this afternoon’s prices and quantities vs. next year’s prices and quantities, all subject to to **conditions diverging in space and time**. Continue reading)

In this section, we are contrasting familiar textbook models of **macrostatic equilibrium**, with Lonergan’s **explanatory theory **of **macrodynamic equilibrium**. We are contrasting a macrostatic toolkit with a** purely relational field theory** of macroeconomic dynamics. Lonergan discovered a theory which is more fundamental than the traditional wisdom based upon human psychology and purported endogenous reactions to external forces. His Functional Macroeconomic Dynamics is a set of **relationships between n objects**, a set of intelligible relations linking what is

Lonergan, like Euclid, Newton, and Mendeleyev, moved through his field of inquiry to **the level of ****system**.

(Given the failure to implement the basic expansion,) the

systematic requirementof a rate of losses will result in a series of contractions and liquidations. … [CWL 15, 155]… a

science emergeswhen thinking in a given field moves tothe level of system. Prior to Euclid there were many geometrical theorems that had been established. The most notable example is Pythagoras’ theorem on the hypotenuse of the right-angled triangle, which occurs at the end of book 1 of Euclid’sElements. Euclid’s achievement was to bring together all these scattered theorems by setting up aunitary basisthat would handle all of them and a great number of others as well. … Similarly,mechanics became a systemwith Newton. Prior to Newton, Galileo’s law of the free fall and Kepler’s three laws of planetary motion were known. But these were isolated laws. Galileo’s prescription was that the system was to be a geometry’; so there was somethingfunctioning as a system. But thesystem really emerged with Newton. This is what gave Newton his tremendous influence upon the enlightenment. He laid down a set of basic, definitions, and axioms, and proceeded to demonstrate and conclude from general principles and laws that had been established empirically by his predecessors. Mechanics became a science in the full sense at that point where itbecame an organized system. … Again, a great deal of chemistry was known prior to Mendeleev. But his discovery of the periodic table selected a set of basic chemical elements and selected them in such a way that further additions could be made to the basic elements. Since that time chemistry has been one single organized subject with a basic set of elements accounting for incredibly vast numbers of compounds. In other words, there is a point in the history of any science when it comes of age, when it hasa determinate systematic structureto which corresponds a determinate field. [CWL 14, Method, 1971, 241-42]